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We study networks made up of interacting solitons (solitonets), and find that their dynamics exhibits

stochastic recurrent behavior, independent of the topology, where the interaction rule at the single-node

level can be used to predict the dynamics of the entire network. The ideas are general, not specific to

solitonets: they apply to many kinds of networks whose dynamics converges to a recurrent structure.
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Complex systems are a field that emerged simulta-
neously in biology, computer science, economy, sociology,
and physics. It attempts to analyze systems displaying
complex overall behavior, which cannot be simply ex-
plained by the properties of the system’s parts. Examples
range from metabolic networks and the World Wide Web
to social networks [1]. The desire to explain the behavior of
such systems, with the vision that similar tools can advance
several fields, has led to major progress. For example, this
logic has led to relating scale-free evolution, known from
fractals, to complex networks [2]. In physics-related areas,
complex systems research proceeds in two main avenues:
topological aspects, where statistical mechanics of critical
phenomena plays a crucial role (e.g., percolation [1]), and
nonlinear dynamics, extending from collective dynamics
of the entire system, to highly fragmented dynamics with
different parts behaving in uncorrelated fashion [3].

In a recent paper, we proposed complex networks con-
structed from interacting fields [4]. We used solitons as
‘‘carriers of interactions,’’ where the soliton collision sites
form nodes in this network of solitons, henceforth called
‘‘solitonets.’’ Solitons are self-localized waves which con-
serve many quantities under interactions [5]. Each soliton
is a field, having infinite degrees of freedom, and at the
same time it behaves as a particle, described by a set (in
integrable systems: an infinitely large set) of conservation
laws [6]. We constructed networks from vector (Manakov)
solitons [7,8], where the dynamic parameter characterizing
the interaction is the ratio between the field amplitudes of
each soliton, while all other properties (number of solitons,
power, momentum, etc.) are conserved. Solitonets display
‘‘extreme complexity’’: the interaction at each node has
infinite degrees of freedom, while conservation laws imply
that the number of different solitons in the network is
uniquely defined by initial conditions [4,6]. They exhibit
novel phenomena such as noise-enhanced memory and
self-synchronization even for random inputs [4].

Here, we show that, when Manakov-based solitonets
have large random topology, they display stochastic recur-
rent dynamics, whose structure is determined by the inter-
action rule at the single-node level, which yields a closed-
form expression. We develop a Markovian approach to

produce an integral discrete-time evolution equation de-
scribing the dynamics, whose solution yields the same
recurrent structure found by direct simulations of the net-
works dynamics. Furthermore, we find that two solitonets
connected by a single node exhibit autonomous dynamics
despite the information flow between them. Finally, we
show that these concepts are general: the recurrent struc-
tures describe the dynamics of a large class of networks,
characterized by a whole variety of interaction rules, and
all of those can be analyzed by the Markovian method.
We begin by describing the interaction. At each node,

two vector (Manakov) solitons of the same power collide at
different velocities [upper and lower solitons in Fig. 1(a)].
Thus, the node has 2 inputs/2 outputs (the input and output
ratios between the complex amplitudes of the fields com-
prising each soliton). The Manakov system is integrable;
hence, power and velocities are conserved, while the ratios
between the field amplitudes of each soliton vary following
the expressions in Fig. 1(a) [8]. We construct networks
made of multiple identical nodes, with all solitons of the
same power and two different velocities. Collisions occur
at discrete time steps at all nodes simultaneously. We begin
by analyzing the single-node network [Fig. 1(b)], and then
construct stochastic networks with 50 000 nodes, as in
Fig. 1(c) (shown 300 nodes, more appear too crowded).
Consider the simplest single-node network, where

each output is fed back into the other input, resembling a
butterfly [Fig. 1(b)]. The interaction rules are specified in
Fig. 1(a), relating the two inputs (x and a) to two outputs (y
and b), through two fixed parameters, g and h. The pa-
rameters y and b values are launched again within the
butterfly network as the new a and x, respectively. The
parameters g and h are identical for all nodes in the net-
works, and do not change during interactions [4,8–10]. Our
simulations reveal that the x and a values of each of the two
solitons are restricted to a circle in the complex plane. At
each time step, the y values emerging from the collision
reside on a single circle, likewise, the emerging b values.
Moreover, we find that, when the solitons have the same
power, i.e. g ¼ �h, the two circles coincide [Fig. 2(a)].
Using g ¼ �h, we prove analytically (see [9]) that the
dynamics in the butterfly solitonet is indeed restricted to

PRL 105, 083901 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

20 AUGUST 2010

0031-9007=10=105(8)=083901(4) 083901-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.105.083901


a single circle. We find a close-form expression for the
circle center, as a function of the initial values of a and x:

center ¼ að1þ x �aÞ þ xð1þ a �xÞ
ð1þ x �aÞ þ ð1þ a �xÞ ;

fxn; an; yn; bng 2 Circðcenter; radiusÞ:
(1)

The radius can be calculated by radius ¼ jcenter� aj ¼
jcenter� xj or by using any other values of xn, an, yn, bn.
This equation yields a single-valued function relating xn
and an, leaving only 1 degree of freedom, equivalent to the
phase on the circle. For example, Fig. 2(a) compares the
simulation results (dark and bright mark the x and a values
of the solitons) to the circle calculated analytically. Note
the important case of zero denominator, generating a re-
stricting line instead of a circle. This happens for circles in
the complex plane, and is referred to as a ‘‘generalized
circle.’’ Hence, the topology of the dynamics of the butter-
fly network resides on a generalized circle.

The results with the butterfly network raise the question
on what can be said on the dynamics of a large, randomly
connected, solitonet. This brings up our main result. We
study numerically the relation between the internal dynam-
ics and the topology of large solitonets, and find that the
structure of their dynamics is stochastically recurrent. We
find that the dynamics of the entire, very large, random
network is restricted by the same (generalized) circle re-
stricting the single-node butterfly network.

The construction of large randomly generated solitonets
is as follows. We connect n collision zones (nodes) with 2n
Manakov solitons (directed edges). We take n to be large
(�20 000 in Figs. 2–4) and randomly generate n bright and
n dark edges. The network is now fully connected, with no

inputs or outputs relating to the outside. To characterize the
network, we plot all values on the edges in the complex
plane. All information related to a specific edge is omitted,
keeping only statistical information (number of solitons vs
complex values). Such omission makes sense since the
network is homogenous (being randomly generated);
hence, the positions of the nodes are unimportant. The
initial conditions (complex values of the 2n solitons) are
chosen randomly according to known probability func-
tions. We shall later see that selecting special initial values
for all solitons affects the emerging dynamics only via their
distribution; hence, the dynamics of a large solitonet is
invariant for permutations of the initial edges values. The
statistical nature of the states through which the network
evolves is found by taking a 2D histogram in the complex
plane over the states [y, b of Fig. 1(a)] obtained at every
time step. This yields a time-evolving density function,
which converges rapidly to a stable stochastically recurrent
structure. That is, the dynamics of any given network, of
any physical g and h, yields a stable structure depending
only on the initial conditions (and parameters g, h), while
being completely independent from the networks topology.
When we produce the initial conditions from a proba-

bility distribution function, we find that different simula-
tions recreate the same recurrent structure. This finding has
profound implications: the state of the entire network can
be described by the distribution functions of the initial con-
ditions on the solitons. Given the distribution function, one
can find its mean values and higher moments, and those
determine the recurrent structure. There is no need to run
multiple simulations to find the recurrent structure. Rather,
the recurrent structure can be found from a single simula-
tion of the network. This also implies that the recurrent
structure is stable against small variations. Hence, it is
possible to actually predict the recurrent dynamics of a
network, given just the distribution of the initial conditions,
without the network structure. To illustrate this, we simu-
late a network with all inputs chosen from the same dis-

FIG. 1 (color online). (a) Interaction rule of two Manakov
solitons, which follows a bilinear transformation mapping the
input states onto the output states, forming a node in the network.
(b) The butterfly network: a single node in which two solitons
collide repeatedly. (c) Typical example of a (randomly created)
large network.

FIG. 2 (color online). (a) Dynamics of a butterfly network for
50 time steps, plotted in the complex plane; initial inputs marked
by big dots (x1 ¼ 1þ 4i; a1 ¼ 4þ i). Left (right) outputs are in
bright (dark). The circle is found analytically from the initial
inputs. (b) Dynamics of a random network of 20 000 nodes; left
(bright) and right (dark) outputs are plotted for 10 time steps;
initial inputs have random distribution around 4þ i (left) or 1þ
4i (right). The outputs in b create two recurrent structures which
‘‘whirl’’ around the same circle restricting the dynamics in (a).
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tribution, implying identical shapes for the outputs histo-
gram, enabling to plot them together. Figure 3 shows three
examples of different recurrent structures representing the
dynamics in a large stochastic solitonet, for different initial
conditions chosen randomly from the same distribution
function but with different widths. The dynamics of the
three converges to different recurrent structures: Gaussian,
when the initial conditions (x, a) have narrow distribution,
ring shaped, and crescent shaped, with the initial norms
increasingly broader. Our findings occur for any selection
of g, h; however, the actual shapes and the convergence
rate depend on g, h. Adding noise to the system [e.g., in the
complex states of each ‘‘edge’’ (soliton)] has negligible ef-
fects on the evolution of the system (see discussion in [9]).

The idea that the recurrent dynamics of a network can be
predicted from the distribution of the initial conditions
calls for an explanation. We develop aMarkovian approach
assuming statistical independence, and produce a set of
coupled integral discrete-time equations of motion
[Eqs. (2) below]. To get the equations, we treat the outputs
of an interaction node as random variables, and use the
Manakov interaction rule to extend their probability with
the complete probability formula. We also assume statisti-
cal independence to separate the density functions. This
assumption requires attention: we can assume that two
colliding solitons have uncorrelated states only if they
interact with a large enough number of other solitons
before meeting again. More precisely, the ‘‘environment
effects’’ decorrelate any statistical dependencies before
consecutive collisions between any particular pair of sol-
itons. This is where complex topology plays a critical role:
only a sufficiently random topology can fulfill this require-
ment. This assumption fails in noncomplex networks, be-
cause such networks have an effective physical dimension
restricting their topology. However, complex networks
usually have an infinite effective physical dimension
[11], because they have no spatial restrictions. This makes
our statistical independence assumption valid in all com-
plex networks. In [9], we provide several examples of
interaction rules that are completely different than
Manakov’s exhibiting recurrent structures which are found
by our Markovian approach. The underlying reason for the

validity of the Markovian approach is that the complex
topology simplifies the statistical nature of the internal
dynamics in the network, that every interaction does not
depend on the outcome of previous interactions with the
same ‘‘interaction carrier’’ (same soliton, as for solitonets).

We define Pright
n , Pleft

n as the 2D probability densities for
the right and left solitons, at the nth time step, evolving in
(discrete) time through the interaction in each node. The
equations governing the evolution are

Pleft
nþ1ðyÞ ¼

Z
A
Pright
n ðaÞPleft

n

ð1þ ð1� gÞjaj2Þy� ga

�g �ayþ ð1� gÞ þ jaj2
 !

�
��������

ð1� gÞð1þ jaj2Þ2
½g �ay� jaj2 � ð1� gÞ�2

��������
2

da

P
right
nþ1ðbÞ ¼

Z
A
Pleft
n ðxÞPright

n
ð1þ ð1� �hÞjxj2Þb� �hx

� �h �x bþ ð1� �hÞ þ jxj2
 !

�
��������

ð1� �hÞð1þ jxj2Þ2
½ �h �x b� jxj2 � ð1� �hÞ�2

��������
2

dx: (2)

The arguments for Pright
n , Pleft

n in the integrals are complex
functions, derived by inverting the transformation of
Fig. 1(a). Simulating Eqs. (2) reveals that they recreate
the same stochastic dynamics as an entire network. Thus,
solving Eqs. (2) numerically, initialized by some distribu-
tion function, can replace multiple simulations of the net-
work, under different initial conditions chosen from the
same distribution. The network structure does not matter:
the dynamics is determined solely by the distribution func-
tion from which the initial conditions are chosen. For a
linearized interaction rule (a and x at close proximity), we
prove analytically (using tools extending from the central
limit theorem) that the dynamics converges to the recurrent
structures predicted by Eqs. (2). However, the Markovian
approach [Eqs. (2)] is more general: we find (numerically)
that the probability densities converge to the structure of
the fully simulated networks even for the nonlinear case,
which is extremely surprising.
An important simplification is g ¼ �h (solitons of equal

powers), and initial conditions from the same probability

(P
Right
0 ¼ PLeft

0 ). This makes the densities equal for all n

(P
Right
n ¼ PLeft

n ), yields a single equation for both P
Right
n ,

PLeft
n . Indeed, simulating the solitonets (Fig. 3) creates the

same time-invariant stochastic structures as predicted by
the Markovian approach [Eq. (2)]. Importantly, Eqs. (2) are
independent of the network topology. The only conse-
quence of topology is the stability of the dynamics, which
creates a recurrent shape holding complete stochastic de-
scription of the dynamics of the entire network. At the
same time, the actual recurrent shape is determined by the
interaction rule. To illustrate this, we simulate the dynam-
ics with left and right inputs chosen from different distri-
bution functions. Figure 2 shows how the dynamics of the
simplest network [dots in Fig. 2(a)], coincides with the sto-
chastic recurrent dynamics of a large network [Fig. 2(b)].
The large network is initialized by random values distrib-

FIG. 3 (color online). Examples of the recurrent structures
emerging in solitonets, and cross sections taken through the
center. All pictures were created by a 2D histogram of a
20 000 nodes complex network with different initial conditions.
(a) Gaussian-shaped structure. (b) Ring-shaped structure.
(c) Crescent-shaped structure, which is the generalized recurrent
structure, of which both the Gaussian and the ring-shaped
structures are special cases.
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uted around some x1, a1. The stochastic dynamics of a
large network converges to values organized around the
complex circle characterizing the single-node network,
which is calculated analytically by using Eq. (1) and initial
conditions x1, a1. The whirling dynamics goes on forever,
spreading and squeezing around the analytical circle.

Finally, one can ask, where does the topology affect the
dynamics? How is a solitonet different from a ‘‘gas of
solitons’’ where random pairs collide at each time step?
The answer has to do with constraints: when topology
imposes a bottleneck, the network dynamics is constrained
by the topology. For example, consider two large solitonets
connected through a single node. We find that each net-
work maintains its own stochastically stable dynamics
even while they interact, while the mutual effects are
dominant only during long range evolution. Figure 4 shows
the simulated dynamics of two solitonets connected
through a single node. As shown there, although the com-
plex values do intersect, they always get separated after-
wards. Figure 4(b) illustrate this dynamics: at times t1, t2,
t3 both structures exhibit expansion and attract each other.
At times t3, t4, t5 the structures ‘‘collide’’: the complex
values in the outputs of the nodes are similar in both
solitonets. At times t5, t6 the structures move away from
one another, while each preserves its own shape. This
dynamics is summarized in Fig. 4(a). At times t1, t2, t3
the recurrent shapes get closer while expanding, whereas at
times t4, t5, t6 they move away from one another while

shrinking. Each structure remains stable during the inter-
action between the networks, but the topology does affect
the dynamics. The single connecting node breaks the
structure symmetry, causing one formation to expand while
the other shrinks. Such asymmetry is shown in Fig. 4:
although the solitonets are symmetric in size and initial
conditions, the expansion of the gray structure in Fig. 4(a)
is significantly larger than the expansion of the black
structure. This is a consequence of some parameters of
the dynamics being sensitive to initial conditions. Hence,
the asymmetry is governed by the random topology of both
networks, creating resonant modes coupled to each other.
To summarize, we studied complex networks made of

interacting Manakov solitons, and found that their internal
dynamics evolves in stochastically recurrent structures,
which depend on the initial conditions but not on the net-
work topology. We find that dynamics in a large stochastic
network is equivalent to the dynamics in a single-node
network, both restricted to the same generalized circle.
Hence, the dynamics in large stochastic networks can be
predicted from the dynamics in the simplest network. We
demonstrated the role of networks topology by studying
cases where topology forms a bottleneck, restricting the
information transfer between two large solitonets. Our
findings can be realized experimentally in optical systems,
where Mankov solitons and their interactions have been
demonstrated [12–14]. Last but not least, the ideas dem-
onstrated here are general, not specific to solitonets. As we
show in [9], many kinds of networks display dynamics that
converge to recurrent structures, and can be predicted using
our Markovian approach. Are there specific conditions on
the interaction rule for recurrent dynamics to emerge? Can
these ideas be extended to scale-free networks containing
interactions? These and related questions raise interesting
ideas for further thought.
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FIG. 4 (color online). Dynamics of two solitonets, each of
10 000 nodes, connected by a single-node, simulated for
15 000 time steps. (a) Standard deviation of each solitonet, and
absolute distance between their mean values. Vertical lines mark
the times at which each 2D plot is presented (t1; . . . ; t6).
(b) Evolution of the solitonets at times t1; . . . ; t6. The images
are created by placing all left and right outputs (y and b) on the
complex plane. The colors emphasize that the structure of each
solitonet is autonomous, without mixing.
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